FLORIDA
TECH

FLORIDA'S STEM UNIVERSITY"

RMC - CSE Milestone 2

Liam Sapper

GContact & Meeting Information

 CSE Project Member: Liam Sapper -
Isapper2020@my.fit.edu

« Faculty Advisor: Dr. Marius Silaghi - msilaghi@fit.edu

« Client: FIT's Robotic Mining Competition team (RMC), and by
extension, NASA (the host of the Robotic Mining
Competition).

« Head of RMC project:
« Sidney Causey (scausey2021@my.fit.edu) - Aerospace Engineering

 Meeting Times: Wed. 4pm-5pm; Fri. 3pm-3:30pm

IIIIIIIIIIIIIIIIIIIIIII

TASK COMPLETION % | TO DO

1. Implement a simulator 100%
2. Design test vectors for main 80%
requirements to be verified by simulator

3. Look up documentation of involved 30%
hardware

4. Research relevant algorithms for 100%

autonomous tasks

5. Develop navigation system 30%

none

Try to create numeric measurements to be
checked

Need to look up documentation for chosen
encoder, motors, and other sensors

none

Move past pseudocode/logic phase, start
building/testing base software

CFLORIDA
TECH

-3 \\\\ WEEEETRICEWES

Task 2

« Waypoints are set beforehand
+ Test Vectors:

« Waypoint storage system is functional; waypoint
information stored and retrieved
Set first waypoint at 0,0
When navigating, acknowledge waypoint reached
Turn in correct direction of next waypoint
Start moving forward towards next waypoint
Stop navigation once it reaches last waypoint

Task 3

« Hardware documentation: computer, motor,
encoder, other sensors

« Raspberry Pi for computer, attempting to obtain one
» Works with Python and can connect to Arduino
 Encoder: Counts number of rotations of a motor.

« Calculating distance with info from encoder:
distance = (motor rotations) * (wheel
perimeter/gear ratio)

 Works along with Internal Measurement Unit,
keeping track of acceleration of bot

IIIIIIIIIIIIIIIIIIIIIII

procedure EP/N
begin
if there exists a previous population with relevant paths then
input the previous population P

else
initialise P

end if

evaluate P

while the termination condition is not reached do
use the operator probabilities to select an operator O

\\ - - select parent(s) for the operator
] RO O t N a V I g a t I O n y produce offspring by applying the operator O to the selected parents(s)

evaluate the new offspring

replace the worst member(s) of the population P by the new offspring
Wa O I n tS 2 O O 8 Ya n select the best individual p from P
every n" step
if the algorithm is operating in an online manner and p is feasible then
Wa n g D a V I M u Va n e y move one step along the path determined by p while sensing the environment
7 modify the values in all individuals to a new starting position
: : if there is any change needed to the existing plan then
Illitoe, Erick Swere
4 end if
evaluate P

« Made use of both reactive i

end while

behavior and deliberative =
p | a n n | n g pli:)ecgeicll]ure vertex planning algorithm

if there exists a previous population with relevant paths then
input the previous population P

else
initialise P

end if

» Currently working on

while the termination condition is not reached do

d e I I b e ra t I Ve use the operator‘probabilities to select an operator O

select parent(s) for the operator
produce offspring by applying the operator O to the selected parents(s)

¢ Wa n t to a d d re a Ct I Ve | a te r O n fev;ll:lllégetttlze\;frz ([)Ifislﬁrli)i;%s) of the population P by the new offspring P

end while

select the best individual from P I'LU R I DA
end procedure

-1 \\\\ WEEEETRICEWES

In [3]: class Node:
For doubly linked list
def __init(self, next=None, prev=None, head=None, tail=None, data=None):

self.next next
self.prev = prev
self.head head

self.tail = tail
a s self.data = data
class RobotNavigation:
Node currentNode = new Node
def __init_ ():
Set first waypoint xy coordinates (0,0), and direction/angle.
Node headNode = new Node
headNode.data = [0,0,angle(07?)]
currentNode = headNode
NavGui thisGui = new NavGui

def getPosition():
Get current position.
#Xx =
#y-=
angle =
#

def setWaypoint():
Focus on manual first
When markButton = pressed, mark current xy from data given as waypoint

def autoNavigate():
Follow waypoint route starting from 0,0
loop; while (not at last waypoint)
find angle for straight shot to next waypoint
turn robot towards waypoint
start moving towards waypoint
check x and y
check angle
if current x and y = next waypoint x and y
stop
mark waypoint as reached, get x + y for new waypoint
else
continue moving

In [2]: class NavGui(QMainWindow):
self.resize(width, height)
self.setWindowTitle("Muck Navigator")
self.loadGui

def loadGui(): (A*
Set up arena/grid view \FLURIDA
Set up waypoint list
Set up "Set Waypoint" button (might want a physical button for this though) TEGH

-1\ WEEEPTEIS

Task o

WAYPOINT XPOS YPOS

1

MARK WAYPOINT

AUTO NAV

(X
~FLORIDA
TEGH

-1\ WEEEPTEIS

Milestone 3 Plan

1. Implement code in simulator that passes vectors
2. Implement unit tests for verifying simulated code

3. Continue researching algorithms for autonomous tasks, look up
libraries for selected algorithms

4. Implement/Adjust any missing/existing techniques and tasks

“FLORIDA
TECH

-3 \\\\ WEEEETRICEWES

M3 Task 1

 Move past pseudocode phase

 Webots simulator provides motor
simulation and other libraries

« Replace simulation w/ proper outside
connections

IIIIIIIIIIIIIIIIIIIIIII

M3 Task 2

» Goes along with task 1
« Break everything up into smaller
problems
« Test separate parts of functions
« Test complete functions separately
« Test to make sure functions work
together

IIIIIIIIIIIIIIIIIIIIIII

M3 Task 3

* Current findings seem acceptable

 How many people have improved on this strategy?
Are there more efficient methods?

 What can I do to improve the current algorithm?

IIIIIIIIIIIIIIIIIIIIIII

M4 Task 4

« Look into more hardware documentation of confirmed
motors/sensors

« Confirm I am being given correct information from
sensors to use in software

« Once again, move past pseudocode phase

IIIIIIIIIIIIIIIIIIIIIII

FLORIDA
TECH

FLORIDA'S STEM UNIVERSITY"

Thank you

