

Contact & Meeting Information

- CSE Project Member: Liam Sapper -Isapper2020@my.fit.edu
- Faculty Advisor: Dr. Marius Silaghi msilaghi@fit.edu
- Client: FIT's Robotic Mining Competition team (RMC), and by extension, NASA (the host of the Robotic Mining Competition).
- Head of RMC project:
 - Sidney Causey (scausey2021@my.fit.edu) Aerospace Engineering
- Meeting Times: Wed. 4pm-5pm; Fri. 3pm-3:30pm

Progress Matrix

TASK	COMPLETION %	TO DO
1. Code level review/language selection	100%	none
2. Small demos	100%	none
3. Requirement document	90%	Confirm specifications of navigation software/GUI
4. Design document	80%	Finalize design of navigation GUI, as well as confirm computer being used on robot
5. Testing document	100%*	*Make edits to performance test cases

3

- Language selected: Python
- Why?
 - Easy to use
 - Versatile
 - Most known among group members
 - Most simulation software has Python integration

Task 2

- Demos created in Python
- Basic programs implementing manual and autonomous movement in a small robot
- Simulation software to be implemented was figured out early; 1 less task for Milestone 2

Tasks 3, 4, & 5

- Developed in tandem with the RMC team creating their SRR (System Requirements Review) document
- T3: Reformatted tables include i/o examples
 - Will continue talks with navigation
- T4: Component interactions, classes and functions. Graphs included.
 - Again, talk with navigation
- T5: Test cases created

 - Not great with computer networking
 Test cases for performance reqs. to be adjusted

Milestone 2 Plan

TASK

1. Implement a simulator - DONE

2. Design test vectors for main requirements to be verified by simulator

3. Look up documentation of involved hardware

4. Research relevant algorithms for autonomous tasks

M2 Task 2

- What criteria does the software need to pass?
- What to think about:
 - Valid and invalid inputs
 - When the software can run
 - Time it takes software to run
 - Time it takes robot to complete action
 - If movement is done within expectations
 - Virtual environment will help with visual tests

M2 Task 3

- Determine what is taken care of by chosen motors
- Decide on computer to use: Raspberry Pi or Arduino?
- Look up documentation on the hardware and how software is related to it; confirm language is compatible, how it can be used

M2 Task 4

- Research possible algorithms for completing autonomous tasks
 - What would be good for movement? Do they need to be complicated? Would the same one apply for both moving and digging?
- Research will be done up until the end of the semester, even into winter break
 - Most of spring semester will be dedicated to implementing manual controls and developing autonomous functions

